SCHOOL OF DATA SCIENCE

Chinese Event Extraction Report

Shihan Ran - 15307130424

Abstract—This project is aimed at doing sequence labeling
to extract Chinese event using Hidden Markov Models and
Conditional Random Field, which can be separated as two
subtasks: trigger labeling (for 8 types) and argument labeling
(for 35 types). During this project, for reading and saving data,
I use libraries like pickle and codecs. In terms of tokenization
and tagging Part-Of-Speech for preparation for the CRF toolkit,
I choose Jieba. To achieve higher accuracy rate for HMM, I’ve
used several smoothing methods, and implemented both bigram
and trigram models. Talking about training and testing models, I
divided the Development Set into Training Set and Dev-Test Set.
Finally, the best accuracy was achieved at 71.65% for argument,
94.68% for trigger with CRF, 96.15% for argument, 71.88% for
trigger with HMM.

I. INTRODUCTION

VENT Extraction has always been a popular topic in

Natural Language Processing. With the amount of text
files on the Internet increasing exponentially each day, the
volume of information available online continues expanding.
Sequence labeling, where the task is to map a sentence
r1,---,Ty tO a tag sequence yi,--- ,Yn, 1S an important
component in information extraction tasks.

In this project, we focus on Chinese event extraction, which
can be separated into two aspects: identify the trigger word in
the sentence, classify it to the 8 types and identify all the
arguments in the sentence, classify them to 35 types.

For the following parts of the report, we will present
the mathematics of the HMM firstly, beginning with the
Markov chain. Then we will discuss the principles of Viterbi
algorithms by introducing the design and implementation of
the Chinese event extractor. Finally, we analyze the testing
results, draw a conclusion and discuss the future work.

II. HIDDEN MARKOV MODELS

Hidden Markov Models (HMM) [1] is a sequence model. A
sequence model or sequence classifier is a model whose job
is to assign a label or class to each unit in a sequence, that is
mapping a sequence of observations to a sequence of labels. A
HMM is a probabilistic sequence model: given a sequence of
units (words, letters, morphemes, sentences, whatever), they
compute a probability distribution over possible sequences
of labels and choose the best label sequence by maximum
likelihood estimation.

A. Markov chain

To define it properly, we need to introduce the Markov chain
first, sometimes called the observed Markov model. A Markov
chain is a special case of a weighted automaton in which
weights are probabilities (the probabilities on all arcs leaving a
node must sum to 1) and in which the input sequence uniquely
determines which states the automaton will go through.

Fig. 1. A Markov chain for weather, which can be specified by the graph
structure, the transition between states, and the distribution over starting state
probabilities.

This Markov chain should be familiar; in fact, it represents
a bigram language model. Given models in Fig. 1, we can
assign a probability to any sequence from our vocabulary. A
Markov chain is specified by the following components from
Table L.

TABLE I
A MARKOV CHAIN’S COMPONENTS

S=s1-+8n a set of n states

a transition probability matrix A, each
a;; representing the probability of moving
from state i to state j

A =ap1a02 - Gnl - ann

™ an initial probability distribution over states

B. Hidden Markov Model

A Markov chain is useful when we need to compute a
probability for a sequence of events that we can observe in the
world. In many cases, however, the events we are interested in
may not be directly observable in the world. For example, we
didnt observe Part-Of-Speech tags in the world; we saw words
and had to infer the correct tags from the word sequence.
We call the Part-Of-Speech tags hidden because they are not
observed.

Hidden Markov model (HMM) allows us to talk about both
observed events (like words that we see in the input) and
hidden events (like Part-Of-Speech tags) that we think of as
causal factors in our probabilistic model.

An HMM is specified by the following components from
Table II.

A first-order hidden Markov model instantiates two sim-
plifying assumptions. First, as with a first-order Markov

SCHOOL OF DATA SCIENCE

B, . B,
[P(1|HOT)] [2] [P(1|COLD)] [5]
p@|HoT) [= |4 p@|coLD)| = |4
p@|HOT) [|4 p@a|col)| |1

Fig. 2. A hidden Markov model for relating numbers of ice creams eaten
by Caroline (the observations) to the weather (H or C, the hidden variables).

TABLE 11
HMM’S COMPONENTS

S=s1:--8n a set of n states

a transition probability matrix A,
each a;; representing the probability of
moving from state i to state j

A '=ap1ap2°+anl - ann

O =0102---0r a sequence of T observations

a sequence of observation likelihoods,

B=b;(0t) also called emission probabilities, each
expresses the probability of an observation
ot being generated from a state i
™ initial probability distribution over states

chain, the probability of a particular state depends only on
the previous state:

P(s;|s1---81) = P(s4]si1)

Second, the probability of an output observation o; depends
only on the state that produced the observation s; and not on
any other states or any other observations:

,or) = P(0;|s;)

Notice that in the HMM in Fig. 2, there is a (non-zero)
probability of transitioning between any two states. Such
an HMM is called a fully connected or ergodic HMM.
Sometimes, however, we have HMMs in which many of
the transitions between states have zero probability, and we
should do smoothing ourselves.

For Chinese event extraction tasks, it’s a Decoding prob-
lem, i.e. given an observation sequence O and an HMM
A = (A, B,), discover the best hidden state sequence Q.

We use the Viterbi Algorithm to to do decoding problems.

P(oils1 -8y 87,01, , 04y

C. Viterbi Algorithm

Viterbi is a kind of dynamic programming that makes uses
of a dynamic programming trellis. The idea is to process the
observation sequence left to right, filling out the trellis. Each
cell of the trellis, v:(j), represents the probability that the
HMM is in state j after seeing the first t observations and pass-
ing through the most probable state sequence sg, S1,- - , St1,
given the automaton A . The value of each cell v;(j) is
computed by recursively taking the most probable path that
could lead us to this cell. Formally, each cell expresses the
probability

Ut(j) :maXP(SO7817"' 3 St—1,01,02, - ,0¢t, S¢ :]|)\)

Note that we represent the most probable path by taking
the maximum over all possible previous state sequences. Given
that we had already computed the probability of being in every
state at time t-1, we compute the Viterbi probability by taking
the most probable of the extensions of the paths that lead to
the current cell. For a given state s; at time t, the value v,(j)
is computed as

v¢(j) = maxv—1(2)a;;b;(ot)

The three factors that are multiplied in the above equation
for extending the previous paths to compute the Viterbi prob-
ability at time t are as the following Table III.

TABLE III
VITERBI’S COMPONENTS

vr—1(1) the previous Viterbi path probability
a;j the transition probability from previous
state s; to current state s;
the state observation likelihood of
the observation o; given the current state j

b; (o)

III. THINGS BEFORE MODELING

Before we get started, we should consider several questions:

1) What algorithms should we choose?

2) How can we find the balance between using rules and
improving the programs’ speed?

3) How can we find the balance between accuracy and
speed?

4) Are we over-fitting dataset?

We’ll answer those questions in the following sections.

IV. DESIGN OF EVENT EXTRACTOR

As a supervised algorithm, the Chinese event extractor
needs a training set with pairs of (states, observations) to do
probability calculation, and we should pay extra attention to
smoothing in order to avoid zero values.

The training process of the Chinese event extractor includes
following steps:

A. Preparation of Training Set

Reading argument_train.txt and trigger_train.txt from disk,
simply store words and count into dicts. Then I use pickle
package to store the already processed data into disk in order
to facilitate training process.

The form of processed dicts as the following Table IV.

TABLE IV
PRE-PROCESSING

states
observations
start_probability
transition_probability

{"Rainy’, "Sunny’}
{"walk’, “shop’, "clean’}
{"Rainy’: 6, Sunny’: 4}

"Rainy’: {"Rainy’: 7, *Sunny’: 3},
’Sunny’: {’Rainy’: 4, "Sunny’: 6}
"Rainy’:{"walk’: 1, ’shop’: 4, "clean’: 5},
*Sunny’: {"walk’: 6, shop’: 3, “clean’: 1}

emission_probability

Notice: We should pay extra attention to the encoding and
decoding problems in Chinese.

SCHOOL OF DATA SCIENCE

B. Probability Calculation

Considering the HMM we have is not a fully connected
one, in which many of the transitions between states have
zero probability. Hence the probability calculation isn’t simply
doing P = %, we should do smoothing as well as add "UNK’
item into the dict.

We choose add A smoothing methods.

V. TRAINING AND TESTING

A testing set is a set of samples with pre-tagged label values
as the training set and is used to determine the sequence
labeling accuracy of the event extractor. By comparing the
label value assigned by the extractor with the pre-tagged label
value, we can compute the average accuracy, type_correct,
precision, recall, and F1 score of the extractor.

A. Use Dev-set

The corpus is divided into Development set and Test set,
and to go a step further, we divided the Development set into
Training set and Dev-Test set.

That is, we do training on Training set, testing, adjusting
parameters and choosing the best classifier base on the results
from Dev-Test set. At last, we use our trained best extractor
to do test on testing set.

B. Viterbi algorithm
The training of the Chinese event extraction is the process
of computing probabilities require by:

Ut(j) :maXP(807817"' 3 St—1,01,02, - ,0¢t, S¢ :j|)‘)

which can be presented as
t ¢
v(sg, 81, ,) = argmax H A(si|si—1) H B(oi|s:)

i=1 i=1

The algorithm procedure can be described as following:

Input: a sentence 1 . . . Zp, parameters g(s|u, v) and e(z|s).
Initialization: Set (0, *,*) = 1, and 7(0, u,v) = 0 for all (u, v) such that u # *
orv # *,
Algorithm:
e Fork=1...n,

- Forue K,veK,

(k) = mae (n(k — 1, w,) X (ol u) x e(z4]))

e Return maxyck vek (7(n, u,v) X ¢(STOP|u,v))

Fig. 3. The basic Viterbi Algorithm.

VI. USING CRF TOOLKIT
A. Generating POS lists

Jieba tokenizer creates a word list and Part-Of-Speech
list for every sentence by tokenizing it. Hence I simply use
pseg.cut(sentence) and write the processed line into disk.

B. Write my own template

Since I've added a column containing Part-Of-Speech fea-
tures, special template needed to be implemented.

VII. RESULT ANALYSIS
A. Different smoothing methods for Bigram HMM
1) trigger extraction: By changing A, I got:

0.9 4
0.8
—
0.7 4
—— accuracy
5 0.6 4 type_correct
= 0.
= — precision
® — recall
>
Y054 —1
0.4 1 ___R
0.3 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Lambda

Fig. 4. The accuracy using add A smoothing method

We can see, the change of A doesn’t affect the performance
of bigram HMM much and it reached its convergence early, I
assume the reason is as the followings:

o The types of trigger are not large (only 8 types)

o Only one word will be given a trigger tag in a sentence,
hence there are a lot of O’ tag, which means it’s more
likely for HMM to classify the right one to label and
label a correct type

The best performances of HMM for Trigger was achieved
at A=0.1

TABLE V
BEST PERFORMANCE OF BIGRAM HMM FOR TRIGGER
accuracy | type_correct | precision recall F1
0.8204 0.835 0.3036 0.8584 | 0.4485

2) argument extraction: By changing A, I find the perfor-
mance varies enormously.

TABLE VI
DIFFERENT PERFORMANCE OF ARGUMENT LABELING
A accuracy | type_correct | precision | recall F1
101 0.4266 0.0505 0.4111 0.9929 | 0.5815
102 0.6076 0.1986 0.5064 0.8678 | 0.6396
10—3 0.6812 0.2803 0.5781 0.7599 | 0.6567
10—3 0.6902 0.2989 0.5916 0.7357 | 0.6558
107 0.6913 0.2997 0.5945 0.7254 | 0.6534
10—° 0.6921 0.3001 0.5955 0.7244 | 0.6537
10~9 0.6923 0.3002 0.5959 0.7241 | 0.6538
107 0.6923 0.3002 0.5959 0.7241 | 0.6538
1038 0.6923 0.3002 0.5959 0.7241 | 0.6538

SCHOOL OF DATA SCIENCE

We can see, its convergence was reached at 0.3002, and then
the decrease of A\ doesn’t affect the performance. I assume this
phenomenon is due to the limitation of add A smooth.

B. Trigram HMM

Intuitively we take it that trigram models will outperform bi-
gram models, hence apart from bigram HMM, I implemented
another trigram HMM.

Notice: We should pay extra efforts to deal with the initial
state, which is represented by *, and the final state, which is
represented by *STOP’.

This time I use back-off smoothing, and performances vary
from the different combination of A1, A2, A3, by changing the
relative magnitude of A\, we got results as follows:

TABLE VII
PERFORMANCE OF TRIGRAM HMM FOR TRIGGER
A1:A2:A3 | accuracy | type_correct | precision | recall F1
1:1:1 0.9615 0.9662 0.8284 0.6905 | 0.7532
7:2:1 0.9615 0.9662 0.8284 0.6905 | 0.7532
1:2:7 0.9617 0.9684 0.7959 0.7401 | 0.7671
1:1:8 0.9624 0.9686 0.7959 0.7431 | 0.7706
TABLE VIII
PERFORMANCE OF TRIGRAM HMM FOR ARGUMENT
A1:A2:A3 | accuracy | type_correct | precision recall F1
1:1:1 0.7188 0.4117 0.6853 0.5530 | 0.6121
7:2:1 0.7265 0.4047 0.6907 0.5763 | 0.6283
1:2:7 0.7081 0.4200 0.6881 0.4981 | 0.5779
1:1:8 0.7067 0.4367 0.6926 0.4834 | 0.5694

It is natural for us to draw a conclusion that trigram HMM
has better performances than bigram HMM.

However, it is interesting to see that different combinations
of A will affect the performances for trigger and argument
differently.

C. CRF Toolkit

After add the Part-Of-Speech features, I've tried several
command line parameters like -f 3 -c¢ 1.5 and find the per-
formances are as followings:

TABLE IX
BEST PERFORMANCE OF CRF
accuracy | type_correct | precision recall F1
trigger 0.9468 0.9547 0.9707 0.3869 | 0.5532
argument 0.7165 0.4334 0.7529 0.4369 | 0.5529

CRF is more stable and has higher performances for both
trigger and argument tasks.

VIII. CONCLUSION

The main objective of this project is to apply HMM models
on Chinese event extraction. We explored Markov chains,
both bigram and trigram Hidden Markov models and Viterbi
algorithm for event extraction. Also, we explored methods
used for text preprocessing, probability computation, dealing
with zero values and so on.

In this project, we have learned the advantage and easy-to-
use feature of HMM and CRFE. However, there does remain
scope for improving the performance of the Chinese event
extractor. For example, we can use Neural networks like
LSTM to do sequence to sequence tasks.

REFERENCES

[1] Rabiner, L. R. (1989). A tutorial on hidden markov models and selected
applications in speech recognition. Proceedings of IEEE.

