
Spell Correction - PJ report

By Shihan Ran - 15307130424

I. Environment
Python 3.6.1
Package:

numpy 1.13.1 and nltk 3.2.3

II. Theory
1. Expression

We use probabilities to choose the most likely spelling correction for word w.
That means, when we are trying to find the correction word c, out of all possible candidate corrections, we can
maximizes the probability that c is the intended correction, given the original word w:

And by Bayes' Theorem we know that:

Since is same for every candidate c, the question is equivalent to:

2. Models

Selection Mechanism:
We choose the candidate with the highest probability.
Language Model:
The probability that c appears as a word of English text.
Candidate Model:
This tells us which candidate corrections, c, to consider.
Channel Model:
The probability that w would be typed in a text when the author meant c.

III. Data
1. Training Corpus

argma P(c|w)xc∈candidates

argma P(c)xc∈candidates
P(w|c)
P(w)

P(w)

argma P(c)P(w|c)xc∈candidates

argmax

P(c)

c ∈ candidates

P(w|c)

Actually, I've tried reuters and brown-news, and I found that reuters is more suitable for this project.
The Accuracy of reuters is higher about 8%.

2. Test data

1,000 senteces created by TA in ./testdata.txt

IV. Project Structure
Selection Mechanism:

Simply use max().

Language Model

A model that computes either of these:

is called a language model.
We use Chain Rule and Markov Assumption to compute .

Candidate Model

We use Edit Distance to find which candidate corrections, c, to consider.

Channel Model

At first, I take it that all known words of edit distance 1 are infinitely more probable than known words of edit
distance 2.
Then we don't need to multiply by a factor, because every candidate will have the same probability.
Later, TA gave us some inspiration that using spell-error.txt to generate confusion matrix.

Talk is cheap, show me the code!

def preprocessing(ngram):

read the vocabulary from vocab.txt and store it to a list
read testdata from testdata.txt and preprocessing it
preprocessing the corpus and generate the count-file of n-gram

def language_model(gram_count, V, data, ngram):

given a sentence or phrase or word, predict the probability
do everything in log space to void underflow (also adding is faster than multiplying).
I've tried using add- smoothing and simple backoff

from nltk.corpus import reuters
corpus_raw_text = reuters.sents(categories=reuters.categories())

P(W) = P(, , … ,), P(| , , … ,)w1 w2 wn wn w1 w2 wn−1

P(W)

P(w|c)

λ

unigram
Tanin/V = -13.3879685383

1
2

1
2

def make_trie(vocab):

turn the vocabulary_list into a trie
this change of data structure will improve the code effectiveness from 15mins to 30s

def get_candidate(trie, word, path='', edit_distance=1):

it will return the candidate list of the error word according to the given edit_distance

def edit_type(candidate, word):

Method to calculate edit type for single edit errors.

def load_confusion_matrix():

Method to load Confusion Matrix from external data file.

def channel_model(x,y, edit, corpus):

Method to calculate channel model probability for errors.

Taiwan/V = -8.56768697273
Darwin/V = -13.3879685383
Twain/V = -13.3879685383

bigram
first quarter/first = -7.41537424018
first quartet/first = -13.3879685383

trigram
for the while/for the=-13.3879685383
for the whole/for the=-11.1922992368
for the whoe/for the=-13.3879685383

>>> get_candidate(trie, 'miney', path='', edit_distance=1)
>>> ['money', 'mined', 'miner', 'mines' ,'mine']

>>> get_candidate(trie, 'wsohe', path='', edit_distance=2)
>>> ['she', 'shoe', 'some', 'sore', 'sole', 'soe', 'swore', 'whole', 'whore', 'whose',
'whoe', 'wrote', 'whoe', 'wove', 'woke', 'wore', 'woe', 'wohd']

could coul ('Deletion', 'd', '', 'c', 'cd')
mine miney ('Insertion', '', 'y', '#y', '#')
barely barels ('Substitution', 'y', 's', 's', 'y')
revenues ervenues ('Reversal', 'er', 're', 're', 'er')

could coul -1.60943791243
soul coul -9.48322601519

three trhee -5.35185813348
tree trhee -12.7105501626

3
4
5
6
7
8
9

10
11
12
13
14

1
2
3
4
5

1
2
3
4

1
2
3
4
5

def spell_correct(vocab, testdata, gram_count, corpus, V, trie, ngram, lamd):

get the candidate_list and find the one has the higest probability using language model and channel
model
correct the error word in testdata
write it to result

V. Evaluation
Fix ngram at unigram, change corpus:

Corpus Accuracy

Reuters 85.80%

Brown - news 81.10%

I've tried some other categories in reuters, but the accuracy doesn't increase apprarently, only within 2%.

Fix Corpus at Reuters, use channel model:

n-gram p(w|c) = 1 compute p(w|c)

unigram 85.80% 89.70%

Using spell-error.txt to generate confusion matrix and then use matrices to compute p(w|c).

Fix Corpus at Reuters, change smooth:

n-gram Add-1 Add-

unigram 85.40% 85.40%

bigram 87.60% 93.10%

trigram 84.90% 87s.20%

The reason why the accuracy of unigram is higher than bigram and trigram may be that the smoothing is
not good for language modeling, because the number of zeros isn’t so huge.

Best Accuracy: 93.10%

VI. Some thoughts:
Except coding, I've spent much time on :

1 1 protectionst protectionist
2 1 Tkyo Tokyo
3 1 retaiation retaliation
4 1 tases taxes
5 1 busines business

λ

1
2
3
4
5

Using better data structure can improve the effectiveness greatly (from 15mins to 25s or even better)
use dict, trie, .data, counter

I found bugs in a blog, and I email the writer to discuss with him, helping him improve his code
Try to make my code more pythonic

VII. Reference
1. 动态规划求编辑距离
2. 让你的Python代码更加pythonic
3. 鹅⼚⾯试题，英语单词拼写检查算法？
4. NLP 笔记 - 平滑⽅法(Smoothing)⼩结
5. norvig: spell-errors.txt
6. How to Write a Spelling Corrector
7. Damn Cool Algorithms, Part 1: BK-Trees

http://qinxuye.me/article/get-edit-distance-by-dynamic-programming/
https://wuzhiwei.net/be_pythonic/
https://www.zhihu.com/question/29592463
http://www.shuang0420.com/2017/03/24/NLP%20%E7%AC%94%E8%AE%B0%20-%20%E5%B9%B3%E6%BB%91%E6%96%B9%E6%B3%95(Smoothing)%E5%B0%8F%E7%BB%93/
http://norvig.com/ngrams/spell-errors.txt
http://norvig.com/spell-correct.html
http://blog.notdot.net/2007/4/Damn-Cool-Algorithms-Part-1-BK-Trees

