
SCHOOL OF DATA SCIENCE 1

Stock Market Prediction Report
Shihan Ran - 15307130424

Abstract—This project is aimed at using Text Classification
and Sentiment Analysis to process financial news and predict
whether the price of a stock will go up or down. For reading
and saving data, I use libraries like xlrd, pickle and codecs. In
terms of tokenization, I choose Jieba. To achieve higher accuracy
rate, I’ve added some financial dictionary to Jieba and removed
stop-word from the already tokenized word list. As for extracting
features, both positive and negative word dictionary are used
and only considering the most common words in news for the
purpose of reducing features dimension. Talking about training
and testing models, I divided the Development Set into Training
Set and Dev-Test Set, and have used cross validation to find
the best classifier among Naive Bayes, Decision Tree, Maximum
Entropy from nltk and Bernoulli NB, Logistic Regression, SVC,
Linear SVC, NuSVC from sklearn. Finally, the best accuracy
was achieved at 69.5% with SVM.

I. INTRODUCTION

TEXT Classification and Sentiment Analysis has always
been a Popular topic in NLP. With the amount of text

files on Internet increasing exponentially each day, the volume
of information available online continues expanding. Text
Classification, as the assignment of text files to one or more
predefined categories based on information contained from text
files, is an important component in information management
tasks.

In this project, we focus on financial news classification,
to predict whether the price of a stock will go up or down.
First, we discuss the principles of Bayes Theorem and the
Nave Bayes algorithms. Then we discuss the principles of
Nave Bayes Text Classifier by introducing the design and
implementation of the stock market predictor. Finally, we
analyze the testing results and discuss the future work.

II. NAIVE BAYES

Naive Bayes is a supervised algorithm which can be de-
fined as Bayes Theorem with a conditional independency
assumption that all variables f1, · · · , fn in a given category C
are conditional independent with each others given C, which
means we have P (fi, fj |Class) = P (fi|Class)P (fj |Class).

In a probability inference task, our goal is to calculate the
probability of a hypothesis C holds given conditions that data
f1, · · · , fn have been observed. Using Bayes Theorem, we
know that

P (C|f1, · · · , fn) =
P (C)P (f1, · · · , fn|C)

P (f1, · · · , fn)

=
1

Z
P (C)

n∏
i=1

P (fi|C)

where Z = P (C)P (f1, · · · , fn|C) is a constant given one
probability inference task.

In stock market prediction, we use Naive Bayesian algo-
rithm to determine which category a financial news belongs to.
We choose the category Cj which yields maximum probability
value of P (Cj|f1, · · · , fn). Then, naturally we have the
formula for Naive Bayesian classification algorithm:

vNB = argmax
Cj∈C

P (Cj)
∏
i

P (Ai|Cj)

III. THINGS BEFORE MODELING

Before we get started, we should consider several questions:
1) Is an extra dictionary needed?
2) Do we need to do cross-industry analysis?
3) What algorithms should we choose? We are doing a

simple classification or a much more difficult regression?
4) Should we pay attention to single word’s sentiment or

we can just see through the whole news?
5) How can we find the balance between using rules and

improving the programs’ speed?
6) How can we find the balance between accuracy and

speed?
We’ll answer those questions in the following sections.

IV. DESIGN OF TEXT CLASSIFIER

As a supervised classification application, the stock
market predictor needs a training set with pairs of
(news features, labels) indicating whether the price of a stock
will go up or down.

The training stage of the stock market predictor includes
following steps:

A. Preparation of Training Set
Reading train.txt and news.txt from disk, matching news

number in train.txt with news in news.txt, title and content
are stored respectively because intuitively we think title is
much more important than content, hence I choose to store
it separately instead of simply adding title into content or just
discarding title.

Training Set is divided into positive set and negative set
with pairs of ([[title1],[content1],[title2],[content2],...],labels).
Then I use pickle package to store the already processed data
into disk in order to facilitate training process.

Notice: We should pay extra attention to the encoding and
decoding problems in Chinese.

B. Generating word lists
Jieba tokenizer creates a word list for every title and content

by tokenizing it. Considering the news is from financial field,
I downloaded financial and stock funds word dictionary from



SCHOOL OF DATA SCIENCE 2

Sogou[1] and loaded it in Jieba. And I use cut all=False
because the precision mode is enough for this project.

In text classification, words that appear more often than
a given frequency in a set of text files are called stop words
which make no contribution to effective text classification. We
use a stop word list [2] to delete stops words from word lists.

C. Extracting features
Considering we are doing a sentiment analysis and text

classification task, I have picked following features.
• The frequency of most common words
• The appearance of positive and negative words
• The existence of Not words and degree words
• The number of news related to this stock
• The number of sentiment words
• The average length of news
For the first one, I calculate the most common 1000 and

2000 words from the already processed news using FreqDist,
which is provided by nltk. Then I process every title and
content, only considering if it contains the most common
words, returning features with pairs of (’increase’, ’True’).

For the second and third one, after surfing the internet, I
downloaded sentiment words dictionary from Dalian Univer-
sity of Technology[3], Not and degress words dictionary via
HowNet knowledge Database[4]. Intuitively, we both think the
frequency is more informative than appearance(although some
papers have proved verses is true), and it’s wildly agreed that
the appearance of Not word is vital because it can change the
sentiment of the news directly, furthermore, the degree word
sometimes can be helpful to determine the confidence of your
classification. Finally, I decided to generate two features:

1) Simply considering the appearance of positive and neg-
ative words

2) Calculating sentiment score of the news using positive,
negative, not, degree words

Again, we can process every title and content, only con-
sidering if it contains positive and negative words, returning
features with pairs of (’dislike’, ’True’).

In order to calculate sentiment score, thanks to Dalian
University of Technology, they have labeled every sentiment
word with a number between 1 and 10 as an extent, so that
I can use these numbers directly. Degree words in HowNet
knowledge Database were divided into extreme/most, very,
more, some, insufficiently, over, so I manually labeled the
corresponding words as {10, 7, 6, 2, 1, 5}. At last, the special
word dict is like {’good’:5, ’bad’:-5, ’extreme’:10, ’very’:7}.

The idea is pretty much naive, first I tried to use Locate-
SpecialWord to find the location of Sentiment words, Not
words, and Degree words, additionally, storing the index into
corresponding arrays SentiLoc, NotLoc, DegreeLoc. Then I
iterate each word, the Score can be computed as Score =
Score + W ∗ (SentiDict[word]), where W is the weight
depends on Not words and Degree words, SentiDict[word]
is the labeled extent number of sentiment word. When we are
doing our iteration, W should change when there exist Not
words or Degree words between one sentiment word and next
sentiment word.

The algorithm can be described as following codes:

1: function SENTIMENTSCORE(SpecialDict, sentence)
2: SpecialWordLoc← LOCATESPECIALWORD()
3: Weight← 1, Loc← 0
4: for word in sentence do
5: if index ∈ SentiLoc then
6: Loc = Loc+ 1
7: Score = Score+W ∗ (SentiDict[word])
8: if Loc < len(SentiLoc)− 1 then
9: for no. ∈ [SLoc[Loc], SLoc[Loc+ 1]] do

10: if no,∈ NotLoc then
11: W = W ∗ (−1)
12: end if
13: if no. ∈ DegreeLoc then
14: W = DegreeLoc[word]
15: end if
16: end for
17: end if
18: end if
19: end for
20: end function

Algorithm 1: SentimentScore

V. TRAINING AND TESTING

The training of the stock market predictor is the process of
computing probabilities require by:

vNB = argmax
Cj∈C

P (Cj)
∏
i

P (Ai|Cj)

Prior probabilities P (Cj), Cj{positive, negative} are
computed as: P (Cj) =

newsj
totalnews

, where newsj is the number
of news in the given class, and totalnews is the total number of
news in the training set. For a given class newsj , to each word
wi in the word lists, we use P (Wk|Cj) = nk

n to compute
P (Wk|Cj), nk is the occurrences of Wk in newsj , and n is
number of news in newsj .

A testing set is a set of samples with pre-classified label
values as the training set and is used to determine the classi-
fication accuracy of the text classifier. By comparing the label
value assigned by the classifier with the pre-classified label
value, we can compute the classification accuracy of the text
classifier.

A. Use Dev-Test set

The corpus is divided into Development set and Test set, go
a step further, we divided the Development set into Training
set and Dev-Test set.

Hence, we do training on Training set, testing, adjusting
parameters and choosing the best classifier base on the results
from Dev-Test set. At last, we use our trained best classifier
to do test on testing set.

B. Find best Classifier and informative features

For classifiers, I’ve written my own NaiveBayes Clas-
sifier and I also considered several available classifiers in
nltk and sklearn like {’Maximum Entropy’, ’DecisionTree’,



SCHOOL OF DATA SCIENCE 3

’BernoulliNB’, ’LogisticRegression’, ’SVC’, ’LinearSVC’,
’NuSVC’}.

As I said, intuitively we think title is much more important
than content, hence I give title a weight, and during iteration,
I’ll find the most suitable weight.

C. Single fold and Cross Validation
To conduct cross validation, first is to find the training set

and testing set every round. It can be realized by:
subset size← int(math.floor(len(train group)/n))
testing this round ← traingroup[i ∗ subset size :][:

subset size]
training this round← train group[: i∗subset size]+

train group[(i+ 1) ∗ subset size :]
Iterate classifier in candidate list and run cross validation,

store the classifiers into disk using pickle, and compute the
average accuracy, precision, recall, F1 score.

VI. RESULT ANALYSIS

Firstly, let’s pay attention to how important title should be.
I only use sentiment word as features, by multiplying a weight
to title’s score, and plot the accuracy of different models under
different weights of title between 1 to 10, I got:

Fig. 1. The accuracy of different models under different weights

And the best accuracy is achieved as the following Table I.

TABLE I
ACCURACY UNDER DIFFERENT WEIGHTS

Classifier Weight Best Accuracy
NaiveBayes 6 0.691
BernoulliNB 3 0.648

LogisticRegression 8 0.687
SVC 6 0.658

LinearSVC 8 0.685
NuSVC 6 0.695

We can naturally draw a conclusion that the best accuracy
is reached when weight of title ∈ {3, 6, 8}. And among these
classifiers, most accurate ones ∈ {’NaiveBayes’, ’LogisticRe-
gression’, ’LinearSVC’, ’NuSVC’}.

Then set Weight = 6 and I ran Cross Validation models,
the result I got on Dev-Test set through different models is as
the following Table II.

TABLE II
ONLY USE SENTIMENT WORDS

Classifier 1-fold 5-fold 10-fold
NaiveBayes 0.658 0.668 0.666
BernoulliNB 0.629 0.633 0.630

LogisticRegression 0.659 0.668 0.672
SVC 0.646 0.652 0.658

LinearSVC 0.647 0.653 0.658
NuSVC 0.653 0.666 0.673

Next I fixed Cross Validation at 5-fold, and tried many more
possible combinations of features, the result I got on Dev-Test
set through different models is as the following Table III.

In the Table, Frequency means we only use the most
common words as features, and Freq 1000 means we use the
most 1000 common words, similarly, Freq 2000 means we
use the most 2000 common words. Sentiment means we only
use the appearance of sentiment words and sentiment score as
features, All means we use the whole features set as mentioned
above:
• The frequency of most common words
• The appearance of positive and negative words
• The existence of Not words and degree words
• The number of news related to this stock
• The number of sentiment words
• The average length of news

TABLE III
DIFFERENT COMBINATIONS OF FEATURES

Classifier Freq 1000 Freq 2000 Sentiment All
NaiveBayes 0.635 0.640 0.668 0.661
BernoulliNB 0.568 0.581 0.633 0.632

LogisticRegression 0.656 0.662 0.668 0.664
SVC 0.655 0.647 0.652 0.538

LinearSVC 0.655 0.655 0.653 0.575
NuSVC 0.677 0.677 0.666 0.618

VII. CONCLUSION

The main objective of this project is to apply Naive
Bayesian algorithm on financial news classification. We ex-
plored Bayes Theorem and Naive Bayesian algorithm for
text classification. Also, we explored methods used for text
preprocessing, probability computation, sentiment analysis in
text classification.

In this project, we have learned the advantage and easy-
to-use feature of Naive Bayes classifier. However, there does
remain scope for improving the performance of the stock
market predictor.

The stock market predictor uses a static model with proba-
bilities of words unchanged during the classification step. Such
a model is restricted by the fact that flaw of prior knowl-
edge may cause noticeable inaccuracy in its classification.
Statistically speaking, the bigger the training set is and the
more randomly that news are chosen, the better model can be
obtained. However, the size of the training set is always limited



SCHOOL OF DATA SCIENCE 4

and the randomly picked news only reflect the trend of news
in a given period. Thereby, a more comprehensive and robust
model can be constructed by tuning probabilities of words
in the vocabulary table dynamically during the classification
step. The advantage of such a dynamic tuning mechanism is
that it enables the model to reflect the latest trend of news,
which eliminates the cost of manually adjust the model or
even rebuild the model.

REFERENCES

[1] Financial word dictionary in SoGou cell dictionary, (2017) [Online]
Available: http://pinyin.sogou.com/dict/detail/index/15127?rf=dictindex
(2017/11/13)

[2] Most 1208 Common Chinese Stop-word, (Nov, 2012) [Online] Available:
http://www.datatang.com/data/43894 (2017/11/15)

[3] Positive and Negative word dictionary, (2008) [Online] Available:
http://ir.dlut.edu.cn/EmotionOntologyDownload (2017/11/13)

[4] Not and Degree word dictionary, (Sep, 2007) [Online] Available:
http://www.keenage.com/html/c index.html (2017/11/13)


