
SCHOOL OF DATA SCIENCE 1

Assignment1. Search in Pacman
Project Report

Shihan Ran - 15307130424

Abstract—This project is aimed at designing a intelligent
Pacman agent that is able to find optimal paths through its
maze world considering both reaching particular locations
(e.g., finding all the corners) and eating all the dots in as
few steps as possible. It can be separated as two subtasks:
implementing graph search algorithms for DFS, BFS, UCS
as well as A*, and use the search criteria outlined in the
lectures to design effective heuristics.

In terms of the first task, since each algorithm is very
similar, all algorithms differ only in the details of how
the fringe is managed. Hence I implemented a single
generic method which is configured with an algorithm-
specific queuing strategy and apply them to Pac-man
scenarios. During this project, alone with implementing
the already well-framed code block, I’ve spent much time
improving my code’s efficiency and comparing different
implementation of heuristics.

I. INTRODUCTION

PAC-MAN is one of the most popular game
in the world. The goal of this game is to

accumulate points by eating all the Pac-Dots in
the maze, completing that ’stage’ of the game and
starting the next stage and maze of Pac-dots. There
are several ghosts roaming the maze, trying to kill
Pac-Man. If any of the ghosts hit Pac-Man, he loses
a life; when all lives have been lost, the game is
over. Its interface is like figure 1.

Fig. 1. The interface of Pac-man.

With the help of problem-solving agent, we can
automatically find optimal paths through its maze
world considering both reaching particular locations
(e.g., finding all the corners) and eating all the dots
in as few steps as possible. To design this intelligent
agent, we implemented several uninformed search
algorithms-algorithms that are given no information
about the problem other than its definition (e.g.,
DFS, BFS, UCS). However, although some of these
algorithms can solve any solvable problem, none
of them can do so efficiently. Consequently, we
introduced informed search algorithms (e.g., A*),
which, on the other hand, can do quite well given
some guidance on where to look for solutions.

For the following parts of the report, we will
begin with the introduction of generic graph search
algorithms firstly, explaining the principles of
search algorithms and point out the differences in
algorithm-specific queuing strategy. Then we turn to
discuss informed search algorithms and the search
criteria outlined in the lectures which we use to
design effective heuristics.

II. GENERIC SEARCH

The process of expanding nodes on the frontier
continues until either a solution is found or there
are no more states to expand. The general TREE-
SEARCH algorithm is shown informally in Fig-
ure 2. Actually, search algorithms all share this basic
structure; they vary primarily according to how they
choose which state to expand next-the so-called
search strategy. In other words, algorithms for DFS,
BFS, UCS, and A* differ only in the details of how
the frontier is managed.

A. Question 1: Depth First Search
Depth-first search always expands the deepest

node in the current frontier of the search tree. As I
mentioned before, the depth-first search algorithm
is an instance of the graph-search algorithm in



SCHOOL OF DATA SCIENCE 2

Fig. 2. An informal description of the general graph-search
algorithms.

Figure 2; it uses a LIFO queue (which is also known
as Stack). A LIFO queue means that the most
recently generated node is chosen for expansion.

TABLE I
RESULTS OF DEPTH FIRST SEARCH

Maze Form Total Cost Nodes expanded Score
tinyMaze 10 15 500

mediumMaze 130 146 380
bigMaze 210 390 300

Here we implement the depth first search algo-
rithm and results can be shown as Table I. Also,
Pac-man need not in fact bother to go to all the
squares on his way to the goal as all the nodes
expanded may not be in the solution returned by the
algorithm. Unfortunately, DFS does not promise us
the optimal solution as we see that the solution is
not the least cost solution.

B. Question 2: Breadth First Search
Breadth-first search is a simple strategy in which

the root node is expanded first, then all the suc-
cessors of the root node are expanded next, then
their successors, and so on. In general, all the nodes
are expanded at a given depth in the search tree
before any nodes at the next level are expanded.
Whereas DFS uses a LIFO queue, BFS is achieved
very simply by using a FIFO queue (which is also
called Queue) for the frontier.

TABLE II
RESULTS OF BREADTH FIRST SEARCH

Maze Form Total Cost Nodes expanded Score
tinyMaze 8 15 502

mediumMaze 68 269 442
bigMaze 210 620 300

Breadth First Search returns a least cost solution
in the sense of how many actions it takes for

Pacman to reach the food dot and results are shown
in Table II. However, the numbers of expanded
nodes are relatively large, reaches 269 and 620
for mediumMaze and bigMaze respectively, which
costs a lot of time to find the optimal solution.
My BFS algorithm also applies to the eight-puzzle
search algorithm.

C. Question 3: Varying the Cost Function
When all step costs are equal, BFS is optimal

because it always expands the shallowest unex-
panded node. However, instead of expanding the
shallowest node, UCS expands the node with the
lowest path cost. This is done by storing the frontier
as a priority queue ordered by cost. In this specific
Pac-man scenarios, the cost functions enable us to
take the perils of being caught by ghosts as well as
the chance of getting more food into consideration.

TABLE III
RESULTS OF UNIFORM COST SEARCH

Maze Form Total Cost Nodes expanded Score
mediumMaze 68 269 442

mediumDottedMaze 1 186 646
mediumScaryMaze 68719479864 108 418

We use priority queue as the frontier to pop out
least cost node every time, which can promise an
optimal solution if we use the cost from initial state
to current state as our cost function. Results can be
concluded as Table III.

I noted that we get very low and very high
path costs for StayEastSearchAgent and StayWest-
SearchAgent respectively, due to their exponential
cost functions. As the cost function for stepping
into (x, y) for stayEastSearchAgent is g = 0.5x, the
corresponding path cost would be pretty low. On
the other hand, the final cost for the path given by
stayWestAgent is 68719479864, which is very high
because its cost function is g = 2x for (x, y).

D. Question 4: A* Search
One of the most widely known form of best-first

search is called A* search. It evaluates nodes by
combining g(n), the cost to reach the node, and
h(n), the cost to get from the node to the goal:
f(n) = g(n) + h(n). Since g(n) gives the path
cost from the start node to node n, and h(n) is the
estimated cost of the cheapest path from n to the



SCHOOL OF DATA SCIENCE 3

goal, we have f(n) = estimated cost of the cheapest
solution through n.

Thus, if we are trying to find the cheapest solu-
tion, a reasonable thing to try first is the node with
the lowest value of g(n) + h(n). The algorithm is
identical to UCS except that A* uses g + h instead
of g.

TABLE IV
DIFFERENCES BETWEEN UCS AND A*

Algorithm Maze Form Total Cost Nodes expanded
UCS mediumMaze 68 269
A* mediumMaze 68 221

UCS bigMaze 210 620
A* bigMaze 210 549

We now implement the A* search to boost the
speed of searching. Here we use the already imple-
mented Manhattan distance as the heuristic function
and wish to observe an increase in the speed of
searching. To better study the difference between
UCS and A*, we listed total cost and search nodes
expanded in Table IV. It turns out that this strategy
is more than just reasonable: provided that the
heuristic function h(n) satisfies certain conditions,
A* search is both complete and optimal.

For openMaze problem, we got results like Ta-
ble V.

TABLE V
RESULTS OF OPENMAZE

Algorithm Maze Form Total Cost Nodes expanded
DFS openMaze 298 576
BFS openMaze 54 682
UCS openMaze 54 682
A* openMaze 54 535

III. CORNERS PROBLEM

A. Question 5: Finding All the Corners
This part of the project intends to make the

discrepancies between searching methods more ob-
vious: the real power of A* Search will be more
apparent with a more challenging search problem.
So, we establish the CornersProblem, where the goal
of the search is eating four food dots at each corner
of the maze instead of eating one with the shortest
path in previous questions.

One major problem here is how to detect whether
all four corners have been reached (in other words,
whether Pac-man achieves the goal state) in an

abstract state representation. We finally decided to
represent these states properly by a nested tuple like
((x,y), (corners to be visited)), where ”corners to be
visited” is also a nested tuple representing which
corners are left to be visited by the agent. And (x,y)
is a tuple representing the position of this state. For
example, ((3, 6), ((1, 1), (1, 6), (6, 6))) means Pac-
man is now at (3,6), and the lower left corner, the
lower right corner as well as the upper right corner
are still not visited.

TABLE VI
RESULTS OF CORNERS PROBLEM USING BFS

Maze Form Total Cost Nodes expanded Score
tinyCorners 28 252 512

mediumCorners 106 1966 434
bigCorners 162 7949 378

After this being done, we now implement BFS
and A* Search to see the difference. Results of BFS
are shown in the Table VI. We will implement A*
Search in the next question.

B. Question 6: Corners Problem: Heuristics
Here we devise our own heuristic function serv-

ing to save more time while searching. Since our
problem here is a graph search problem, we need
to design a heuristic not only admissible but also
consistent. Finally we’ve come up with two differ-
ent heuristics.

1) Heuristics 1: We’ve already known that ad-
missible heuristics are usually also consistent, espe-
cially if they are derived from problem relaxations.
Hence let’s consider generating admissible heuris-
tics from relaxed problems.

If we ignore all walls in the map, which is trivial
in designing admissible heuristics. By doing this,
the cost of walking from a position to another is
the Manhattan distance of these two positions. Then
for all corners unvisited, according to our definition,
corner with the largest Manhattan Distance is the
last one to be visited. After visiting this corner, our
game reaches goal state.

In this case, we simply use the largest Manhat-
tan Distance as our heuristics value. It’s obviously
admissible, since it prevents overestimating the cost
to reach the goal. And it’s also consistent.

2) Heuristics 2: The idea of constructing this
heuristics takes steps. Actually, we’ve inspired by
heuristics 1.



SCHOOL OF DATA SCIENCE 4

First, we still use the Manhattan distance of two
positions and ignore all walls in the map like what
we did before.

Second, consider that if we have already reached
a corner, then we only need to walk along the
borders of the map to touch all unvisited corners.
The most ideal condition is that we walk along the
short side of the map first and touch the second
unvisited corner, then walk along the long side of
the map to touch the third unvisited corner, finally
we walk along the short side of the map to touch
the last unvisited corner. We assume this condition
always happens to make our heuristics admissible,
so to calculate the heuristics value of this part,
we only need to concern the number of unvisited
corners instead of their positions.

Third, we assume that we always firstly walk to
the closest unvisited corner then take the second step
above, so we only need to calculate the Manhattan
distances between current position and unvisited
corners to find the smallest distance to add to the
heuristic value. After update heuristic value, we
replace current position as the closest unvisited
corner and do it again, until all corners are visited.
The algorithm can be concluded like Figure 3.

Fig. 3. Algorithm of Heuristics 2

We can find that all three steps above are admis-
sible, so that our heuristic function is admissible. To
prove it is consistent, its cost is calculated by the
Manhattan distance so it is consistent.

3) Results: We concluded it as Table VII.
Clearly, heuristics 2 is more effective than heuristics
1 since it will return values closer to the actual goal
costs.

IV. EATING FOOD PROBLEM

A. Question 7: Eating All the Dots
To make matters even more complicated, Pac-

man now needs to eat all the dots in the world
instead of only reaching the corners. Here the effect

TABLE VII
RESULTS OF CORNERS PROBLEM USING DIFFERENT HEURISTICS

Heuristics Maze Form Total Cost Nodes expanded
Heuristics 1 mediumCorners 106 1136
Heuristics 2 mediumCorners 106 692
Heuristics 1 bigCorners 162 4380
Heuristics 2 bigCorners 162 1725

of A* Search becomes stronger. The same as what
we did in the last problem, we too came up with
several heuristic.

1) Heuristics 1: It’s pretty similar with the one
in corners problem, except for replacing corner list
with food list.

We still ignore all walls and calculate Manhattan
distance between current position to each dot and
the one with the largest Manhattan distance is the
last one to be visited. After eating this dot, our game
reaches goal state.

In this case, we simply use the largest Manhattan
Distance as our heuristics value. Admissible and
consistent have been proofed before.

2) Heuristics 2: We can’t simply follow the way
in corners problem since there are too many dots in
this case.

Fig. 4. Algorithm of Heuristics 2

A reasonable idea is replacing Manhattan dis-
tance with other distances function that can find
path more accurate. Hence a natural way of doing
it is using the search functions you have already
built to calculate the maze distance between any
two points. The algorithm can be concluded like
Figure 4. We also use problem.heuristicInfo to store
information to be reused in other calls to the
heuristic.

3) Heuristics 3: We use the shortest distance
between Pac-man and food along with the longest
distance between foods and foods. Algorithm can
be simply concluded as Figure 5. It’s consistent.



SCHOOL OF DATA SCIENCE 5

Fig. 5. Algorithm of Heuristics 3

4) Heuristics Others: In order to solve medium
search, I also designed several other heuristic, un-
fortunately it’s all proved to be inconsistent.

5) Results: We concluded it as Table VIII.
Clearly, heuristics 2 outperforms heuristics 1 since
it will return values closer to the actual goal costs.

TABLE VIII
RESULTS OF FOOD PROBLEM USING DIFFERENT HEURISTICS

Heuristics Maze Form Nodes expanded Time
Heuristics 1 trickySearch 9551 4.2
Heuristics 2 trickySearch 4137 2.2
Heuristics 2 trickySearch 721 2.1

B. Question 7.5: Solve medium search
In the previous question, we were asked to write

an A* search heuristic that would find the shortest
path which visits every food dot at least once.
This is obviously similar to the famously NP-Hard
Traveling Salesman Problem, but the previous
mazes we were required to solve were small enough
that even an exponential solution would work. Also,
the mazes were all sparse - most of the maze was
empty, with only a handful of food dots, meaning
we can speed things up by only considering the
food. Instead of trying to find the shortest path in
a large maze of n nodes, we can instead pretend to
solve a problem in a maze of food nodes.

However, when it comes to medium search, old
methods were incapable to solve it. For the medium
search by contrast, the search space is exponentially
large. Even though the maze itself is small, each
possible subset of eaten food represents a different
state in the search space and every square had food
in it. In order to solve it, one must have a more
sophisticated approach.

C. Question 8: Suboptimal Search
The problem indicates that even a good heuristic

would fail to find the optimal path in a short time.

Being such the case, its more realistic to find a
reasonably good path, though not as good as the
optimal path, in a relatively short time.

One of such agent is one which always eats
the dot closest to Pac-man. The goal state test of
AnyFoodSearchProblem can also be done by the
already defined gameState.getFood() function, and
the function of findPathToClosestDot can be simply
constructed by search algorithms (e.g. BFS, UCS,
A*) we implemented before. The results can be
shown like Table IX.

TABLE IX
DIFFERENCES BETWEEN SEARCH ALGORITHMS

Algorithm Maze Form Total Cost Score
DFS bigSearch 5324 -2614
BFS bigSearch 350 2360
UCS bigSearch 350 2360
A* bigSearch 350 2360

Nevertheless, the algorithm here can only be
referred to as suboptimal, not optimal because it is
a simply greedy search.


