
SCHOOL OF DATA SCIENCE 1

Word2Vec and Sentiment Analysis
Project Report

Shihan Ran - 15307130424

Abstract—This project is aimed at using word2vec models for
sentiment analysis, which can be separated as two subtasks:
implementing word2vec model(Skip-gram in this task) to train
my own word vectors, and use the average of all the word vectors
in each sentence as its feature to train a classifier(e.g. softmax
regression) with gradient descent method.

During this project, alone with implementing the already
well-framed code block, I’ve spent much time improving my
code’s efficiency and comparing different implementation meth-
ods. Talking about the sentiment analysis, to achieve higher
accuracy, I’ve tried different combinations with Context size C,
word vector’s dimension dimVectors and REGULARIZATION.
In terms of training and testing models, the Development Set has
been divided into Training Set and Dev-Test Set. Finally, the best
accuracy for dev set was achieved at 29.79% for parameters as
C=9, dim=10, reg=10−7.

I. INTRODUCTION

REPRESENTATION of words as continuous vectors has
a long history. It was later shown that the word vectors

can be used to significantly improve and simplify many natural
language processing applications.

In this project, we focus on training our own word vector,
and using it in the sentiment analysis of Stanford Sentiment
Treebank(SST) dataset, to predict which sentiment categories
a sentence should be assigned.

For the following parts of the report, we will begin with the
introduction of word2vec model firstly, explaining the princi-
ples of both skip-gram[1] algorithms and negative sampling[2]
algorithms. Then we discuss some improvements we made in
our code for higher efficiency by presenting the design and
implementation of word2vec model. Finally, we analyze the
testing results and draw a conclusion.

II. WORD2VEC MODELS

A. Skip-gram model
The training objective of the Skip-gram model is to find

word representations that are useful for predicting the sur-
rounding words in a sentence or a document. More formally,
given a sequence of training words w1, w2, w3, · · · , wT , the
objective of the Skip-gram model is to maximize the average
log probability

1

T

T∑
t=1

∑
−c≤j≤c,j 6=0

log p(wt+j | wt)

The basic Skip-gram formulation defines p(wt+j | wt) using
the softmax function:

p(wo | wI) =
exp(v′

T
wo
vwI

)∑W
w=1 exp(v

′T
wvwI

)

We specified skip-gram by the following components from
Table I.

TABLE I
THE SKIP-GRAM’S COMPONENTS

c the size of the training context
t index of the centered word

W the number of words in the vocabulary
vw, v′w input and output vector representations of w

B. Negative Sampling
The formulation of Skip-gram is impractical because the

cost of computing log p(wo | wI) is proportional to W, which
is often large(105-107 terms).

However, the Skip-gram model is only concerned with
learning high-quality vector representations, so we are free
to simplify the process as long as the vector representations
retain their quality. We define Negative sampling (NEG) by
the objective

log(σ(uTo vc)) +

K∑
K=1

log(σ(−uTk vc))

Assume that K negative samples (words) are drawn, and
they are 1, · · · ,K respectively for simplicity of notation(o 6∈
1, ...,K). For a given word, o, we denote its output vector as
uo.

III. STANFORD SENTIMENT TREEBANK DATASET

Fig. 1. The structure of dataset.

The structure of this dataset and relation between entities
can be concluded as the Figure 1. Although we don’t need to
implemented the testing process ourselves, it may be helpful
if we have a full understanding of the project’s structure.

As always, read and understand code before using it!



SCHOOL OF DATA SCIENCE 2

IV. IMPLEMENTATION OF WORD2VEC

We implemented word2vec model using our calculation of
cost and gradient. However I’ve found that it is crucial to
optimize my code for higher efficiency. Hence, for higher
efficiency, during this process, I’ve looked through many
tutorials and tried several methods for each function.

A. normalizeRows
Method1 Follow the formulation of normalization, intu-

itively I write a function using ”for” loop.

1: for i in range(len(x)) do
2: x[i, :] = x[i, :]/np.sqrt(np.sum(x[i, :]*x[i, :]))
3: end for
4: return x

Algorithm 1: normalizeRows using ”for” loop

Method2 After searching online and I found this can be
achieved by a package!

1: return sklearn.preprocessing.normalize(x, norm=’l2’)

Algorithm 2: normalizeRows using package

AMAZING! After using method2, the average time of
normalizeRows has decreased from 0.000484943389893s to
0.000205039978027s, which means it has saved us about 60%
time!

B. softmaxCostAndGradient
For the implementation of deriving expected gradient:

∂

∂uw
Jsoftmax−CE =

exp(uTwvc)vc∑V
i=1 exp(u

T
i vc)

(w 6= o)

I’ve chosen two methods to achieve it. One is a naive
implementation using ”for” loop, another is the use of
numpy.outer.

Method1 Follow the formulation of softmax’s cost and
gradient, I write a function using ”for” loop.

1: grad = np.zeros([p.shape[0], v c.shape[0]])
2: for i in range(p.shape[0]) do
3: grad[i, :] = v c * p[i]
4: end for
5: grad[target, :] -= v c

Algorithm 3: softmaxCostAndGradient using ”for” loop

Notice! Pay extra attention to the fact that the vectors are
stored by row.

Method2 After doing some math calculating and searching
online and I found this can be achieved by numpy itself! This
operating is called outer product.

AMAZING! After using method2, the average time of soft-
maxCostAndGradient has decreased from 6.01028216279e-
05s to 4.65352400599e-05s, which means it has saved us about
25% time!

1: grad = np.outer(p, v c)
2: grad[target, :] -= v c

Algorithm 4: softmaxCostAndGradient using numpy

C. negSamplingCostAndGradient
For the implementation of deriving expected gradient:

∂

∂vc
J(θ) = (σ(uTo vc)− 1)uo +

K∑
K=1

(1− σ(−uTk vc))uk

∂

∂uk
J(θ) = (σ(uTo vc)− 1) vc

∂

∂uo
J(θ) = [(σ(uTo vc)− 1) + 1] vc

I’ve tried four methods to achieve it.

Method1 Follow the formulation of cost and gradient, I
write a function using ”for” loop.

1: indices = [dataset.sampleTokenIdx() for k in range(K)]
2: u o = outputVectors[target, :]
3: v c = predicted
4: sigma1 = sigmoid(np.dot(u o, v c))
5: cost = -np.log(sigma1)
6: gradPred = u o * (sigma1 - 1)
7: grad = np.zeros(outputVectors.shape)
8:
9: for i in range(K) do

10: u k = outputVectors[indices[i], :]
11: sigma2 = sigmoid(-np.dot(u k, v c))
12: cost = cost - np.log(sigma2)
13: gradPred = gradPred + u k * (1 - sigma2)
14: grad[indices[i]] += v c * (1 - sigma2)
15: grad[i, :] = v c * p[i]
16: end for
17: grad[target, :] += v c * (sigma1 - 1)

Algorithm 5: A slow and inefficient method using ”for” loop

Method2 I tried to use some matrix operating to replace
”for” loop. Hence, I replace

∑
by np.sum, replace * by np.dot

and broadcasting.

1: u k = outputVectors[indices, :]
2: sigma1 = sigmoid(np.dot(u o, v c))
3: sigma2 = sigmoid(-np.dot(u k, v c))
4: cost=-np.log(sigma1) - np.sum(np.log(sigma2))
5: gradPred = u o * (sigma1 - 1) + np.dot((1 - sigma2).T,

u k)
6: grad = np.zeros(outputVectors.shape)
7:
8: for i in range(K) do
9: grad[indices[i], :] += v c * (1 - sigma2)[i]

10: end for
Algorithm 6: Use matrix operating to replace ”for” loop

Method3 I tried to use np.outer to replace a loop!



SCHOOL OF DATA SCIENCE 3

1: temp = np.outer(1 - sigma2, v c)
2: for i in range(K) do
3: grad[indices[i], :] += temp[i]
4: end for

Algorithm 7: Use numpy package

Method4 I tried to only use matrix operations to avoid ”for”
loop but failed :(

The reason why it can’t work, I think it is because there are
replicate values in indices, hence we can’t use index to read
them out and update them all together at the same time.

1: grad[indices, :] += np.tile(v c, [len(sigma2), 1]) * (1 -
sigma2)[:, None]

Algorithm 8: Use only matrix operations

AMAZING! After using these methods, the average
time of negSamplingCostAndGradient has decreased much.
Method2 has saved us about 10% time, and method3 has saved
us about 30% time!

Actually, if you want to make this project more efficient,
instead of only using packages or changing ”for” loop into
matrix operations, noticing that many operations and functions
are paralleled, you can also adjust the whole project structure
from single thread into multi thread, which can be achieved
by python’s package multiprocessing. And this will definitely
tremendously save your time!

V. RESULT ANALYSIS

A. Different C for fixed dimVectors

TABLE II
PERFORMANCE OF DIFFERENT CONTEXT SIZE FOR DIMVECTORS=5

Best regularization C Train acc Dev acc Test acc
10−7 1 27.808989 26.793824 25.791855
10−6 3 27.914326 27.611262 25.701357
10−6 5 28.242041 28.065395 25.339367
10−4 7 28.148408 27.429609 24.660633
10−7 9 27.492978 27.611262 25.339367

TABLE III
PERFORMANCE OF DIFFERENT CONTEXT SIZE FOR DIMVECTORS=10

Best regularization C Train acc Dev acc Test acc
10−6 1 29.389045 29.336966 27.104072
10−5 3 28.944288 28.701181 27.285068
10−6 5 29.166667 28.792007 26.923077
10−5 7 29.459270 29.064487 27.873303
10−7 9 29.588015 29.791099 27.149321

TABLE IV
PERFORMANCE OF DIFFERENT CONTEXT SIZE FOR DIMVECTORS=20

Best regularization C Train acc Dev acc Test acc
10−6 1 29.330524 28.247048 26.877828
10−5 3 29.494382 27.974569 26.515837
10−5 5 28.885768 27.792916 27.194570
10−6 7 29.225187 27.974569 26.968326
10−6 9 29.435861 28.519528 27.149321

TABLE V
PERFORMANCE OF DIFFERENT CONTEXT SIZE FOR DIMVECTORS=30

Best regularization C Train acc Dev acc Test acc
10−6 1 28.593165 28.156222 26.339367
10−8 3 29.225187 28.247048 27.058824
10−6 5 29.166667 28.882834 27.375566
10−8 7 29.096442 29.155313 27.285068
10−6 9 29.073034 27.520436 26.832579

By fixing dimension and changing the value of context size,
results can be concluded within the following Figure 2.

Fig. 2. Different C with fixed dimVectors

We can naturally draw the following conclusions from the
above table and figure:
• Generally speaking, with C increasing, the performances

of this model increases.
• However, the fact didn’t exist: the higher C is, the better

performance.
To explain this a little bit wired phenomena, I assume the

reasons are as followings:
• When C becomes higher enough, there may exists two

problems: convergence and overfitting.
• Sometimes, the accuracy just doesn’t increase and be-

comes plain, because it reached its convergence.
• Other times, the accuracy suddenly decreases, this may

due to the overfitting problem. As we can see, it achieved
high accuracy on train set but relatively low accuracy on
dev and test set.

B. Different dimVectors for fixed C
By fixing context size and changing dimension, results can

be concluded within the following Figure 3.
We can draw conclusions from this figure:
• Generally speaking, the increase of dimVectors doesn’t

necessarily help increase the accuracy of dev set.
• And again, we can see through the plot that the increase

of C doesn’t necessarily means increase of accuracy.



SCHOOL OF DATA SCIENCE 4

Fig. 3. Different dimVectors with fixed C

To explain this phenomena, I assume the reasons are as the
followings:
• Intuitively, we take it that larger dimension can help

contain more information, because the learned vectors ex-
plicitly encode many linguistic regularities and patterns,
which will lead to higher accuracy.

• However this project is based on a relatively small
dataset, hence the larger dimension may also contain
noise information which will decrease accuracy and bring
problems like overfitting.

It seems like we can set dimVectors as either 10 or 30, and
set C as 9, because these combination can attain high accuracy.
Nevertheless, apart from considering accuracy, we should also
take efficiency into consideration.

Don’t forget that larger dimension and larger C are at the
expense of larger training time!

TABLE VI
TRAINING TIME FOR FIXED C=1

dim=5 dim=10 dim=20 dim=30
Training Time/h 1.08 2.73 5.04 7.30

TABLE VII
TRAINING TIME FOR FIXED DIM=10

C=1 C=3 C=5 C=7 C=9
Training Time/h 2.73 2.99 3.17 3.21 3.59

C. Different REGULARIZATION
By changing regularization term, results can be concluded

within the following Figure 4.
We can naturally draw the following conclusions from the

above figure:
• Both large and small regularization value can lead to over-

fitting problem, which may occur as the huge difference
between train accuracy and dev accuracy.

• Large regularization can also brings about problems like
loss of accuracy.

Fig. 4. Different regularization

VI. CONCLUSION

Finally, considering about both efficiency and accuracy, I
choose combination of C=9, dimVectors=10.

The visualized word vector is like Figure 5.

Fig. 5. Visualization of word vector

We can see it separates different kinds of words well,
however it sometimes overlaps contradictory words like great
and boring. This phenomena may due to the small size
of training set and the similar usage for these two words.
For example, I might say: ”I felt this project is great!” and
someone might say ”I felt this project is boring!”. Hence, with
the lack of more corpus data, the word2vec model can’t tell
these words apart.

REFERENCES

[1] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient
estimation of word representations in vector space. ICLR Workshop,
2013.

[2] Distributed Representations of Words and Phrases and their Composition-
ality


